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Jackknife-based diagnostics for non-monotonic hazard
survival model with interval-censored data

Jayanthi Arasan1

Abstract

This study focuses on jackknife-based model diagnostics for a non-monotonic two-parameter
hazard survival regression model (TBPR) when data is interval and right-censored. This
distribution is very flexible, because it accommodates both monotonic and bathtub-shaped
hazard rates. This research proposes a bias-corrected jackknife harmonic mean and a ran-
dom imputation technique to obtain the altered Cox-Snell (r∗Ci

), adjusted Martingale (r∗Mi
)

and Schoenfeld (r∗Si
) residuals. Two simulation studies were conducted to assess the perfor-

mances of the altered residuals and their ability to detect extreme observations and outliers at
various censoring proportions (cp) and sample sizes (n) for this model. The results indicated
that the altered residuals based on jackknife outperformed other residuals at cp and n levels.
The proposed methods are then illustrated using a real dataset on Hodgkin’s Disease with
the prior treatment group as the covariate. The results showed that the altered residuals work
well to address model adequacy and identify potential outliers in the dataset.

Keywords: Jackknife, interval-censored, outliers, covariate.

1. Introduction

Survival data with non-monotonic or bathtub hazard rates is commonly encountered in
medical research. Some examples include lifetimes of kidney or heart transplant patients,
lifetime of curability of breast cancer and lung cancer patients. The two-parameter distri-
bution with bathtub shape (TPB) model was proposed by (Chen 2000) and extended by
(Ismail, Arasan, Safie & Mohd Safari 2022) to incorporate covariates, resulting in what is
known as the TPB regression (TPBR) model. This model is very flexible compared to other
survival models as it accommodates both monotonic and non-monotonic, namely bathtub
shaped hazard rates, see (Chen 2000).

This research focuses on the model diagnostics for the TBPR model when data is both
right and interval-censored. Although residual analysis plays a central role in model diag-
nostics, traditional approaches such as the Cox-Snell residual often fail to perform well un-
der right or interval censoring, particularly when the underlying hazard is non-monotonic.
Existing adjustments like midpoint imputation or bootstrap methods have been explored
primarily for simpler monotonic hazard models. However, real-world survival data often
involve more complex hazard shapes (e.g. bathtub) and censoring types. This study ad-
dresses this gap by proposing a jackknife-based adjustment to residuals specifically for the

1Department of Mathematics and Statistics, Universiti Putra Malaysia, Malaysia.
E-mail: jayanthi@upm.edu.my. ORCID: https://orcid.org/0000-0003-1805-9601.
© Jayanthi Arasan. Article available under the CC BY-SA 4.0 licence



2 J. Arasan: Jackknife-based diagnostics for non-monotonic hazard...

TBPR model, a flexible model that accommodates both monotonic and non-monotonic haz-
ard functions.

Interval-censored data is prevalent in many clinical and longitudinal studies, primarily
due to constraints such as time, cost, and the necessity for periodic inspections conducted at
varying intervals. Data is interval-censored when the lifetime of the ith patient lies within an
interval, tLi < ti < tRi , where tLi and tRi denote the left and right endpoints of the observed
interval, respectively.

A special case of the interval-censored data, where tLi < ti < ∞, gives us the right-
censored data, see (Sun 2006), who provided a detailed overview of statistical methods
for analyzing interval-censored failure time data, covering techniques like maximum like-
lihood, nonparametric, semiparametric, and Bayesian methods. (Lawless 1982) discussed
statistical methods for analyzing interval-censored data, including current status data as
a special case.

The use of computer intensive techniques such as the jackknife and bootstrap can be
found in (Arasan & Lunn 2008), who compared alternative confidence interval estima-
tion methods, including bootstrap and jackknife techniques, for the parameters of a parallel
two-component system model with dependent failure and time-varying covariates, showing
that the jackknife method outperforms bootstrap techniques for censored data. (Arasan &
Lunn 2009), extended a parallel system survival model based on the bivariate exponential to
include a time-varying covariate, evaluating parameter estimates at various censoring lev-
els, comparing fixed vs. time-varying covariate models, and studying Wald, likelihood ratio,
and jackknife methods for constructing confidence intervals, with applications to diabetic
retinopathy data.

Following that, (Manoharan, Arasan, Midi & Adam 2015) compared the performance
of Wald, likelihood ratio, and jackknife confidence intervals for the parameters of the log-
normal distribution in the presence of left-truncated and right-censored survival data, find-
ing that the jackknife method outperformed the others, particularly for small sample sizes
with left-truncated data and low censoring. (Kiani, Arasan, Midi et al. 2012) examined the
Gompertz model with time-dependent covariates and right-censored data, comparing its per-
formance at different censoring levels and sample sizes, and evaluating Wald and jackknife
methods for confidence intervals.

Survival models with interval-censored data have been explored by authors such as
(Kiani & Arasan 2013), who extended the Gompertz model with time-dependent covari-
ates for interval-censored data, comparing the performance of Wald and likelihood ratio
methods for confidence interval estimation. The study highlighted the effectiveness of these
methods in handling interval-censored data. (Fang, Arasan, Midi & Bakar 2015) compared
jackknife and bootstrap confidence interval estimates for the parameters of a log-logistic
model with censored data and covariates, evaluating their performance through coverage
probability studies at various error probability levels and censoring proportions.

(Alharbi, Jayanthi, Haizum & Ling 2022) extended the generalized exponential model
to include covariates for interval-censored data, evaluating the maximum likelihood estima-
tor and Wald confidence intervals, with better performance observed at larger sample sizes
and lower censoring proportions. Then, (Al-Hakeem, Arasan, Mustafa & Peng 2023) ex-
tended the generalized exponential distribution to incorporate time-dependent covariates for
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interval-censored data, comparing maximum likelihood estimations and finding better per-
formance with larger sample sizes and lower attendance probabilities. (Manoharan, Arasan,
Midi & Adam 2020) assessed the performance of local influential diagnostics for the ex-
tended log-normal model with time-dependent covariates, left-truncation, and case-k inter-
val censoring, comparing it with global diagnostics through a simulation study.

More recently, several models and inference methods have been developed for interval-
censored survival data. For instance, (Zhou, Sun & Ibrahim 2021, Zhou & Sun 2021)
explored transformation models and estimation techniques. (García Meixide, Lema &
Vilar 2024) proposed a sparse neural network AFT model for interval-censored outcomes,
demonstrating improved prediction performance over classical methods using real-world
biomedical data. (Lou, Li & Sun 2024) developed a two-step semiparametric transformation
approach to handle missing covariate issues, supported by simulations and an Alzheimer’s
disease dataset. (Zhang, Li & Weng 2023) introduced a valid inference procedure post-
variable selection for the Cox model with interval-censored data, using lasso and asymp-
totic techniques. Lastly, (Pal, Peng & Aselisewine 2023) discussed a support vector–based
semiparametric cure model that accommodates interval-censored survival times.

Other research related to survival models with covariates include (Arasan & Ehsani
2011), who applied a repairable system model for interval failure data with a time-dependent
covariate, evaluating several NHPP-based models on ball bearing failure data and using
bootstrapping for variance estimation. They found that the proposed model was effective
and easy to implement. (Manoharan, Arasan, Midi & Adam 2017) extended the three-
parameter log-normal survival model to incorporate left-truncated and right-censored data
with covariates. They applied bootstrap inferential procedures to estimate the parameters
and assessed the model’s performance through a simulation study.

The Cox-Snell residuals (rCi ) are commonly used for checking the fit of a model in
survival analysis. When the data is positively skewed because of censoring, the Cox-Snell
residuals tend to be smaller or less informative because they are based on the assumption
that all observations are fully observed, which is not the case with censored data, as pointed
out by (Cox & Snell 1968). To correct this, the Cox-Snell residuals can be modified by
adding a positive surplus to make it more reliable. Two conventional modifications of rCi

take the surplus as the mean (r
′
Ci

) and median (r
′′
Ci

) of the standard exponential distribution,
see (Cox & Snell 1968). The use of the median of the standard exponential distribution
for the surplus was proposed by (Crowley & Hu 1977) as they found the mean tends to
inflate the residual far too much. Normally, the arithmetic mean works well when the data
is simple and does not have extreme values or outliers, as discussed by (Huber 1981). If the
data contains extreme values, the arithmetic mean may not be ideal, as it can overly increase
the residuals.

For survival data, which can often follow an exponential or skewed pattern, the geomet-
ric mean is a better option because it handles this kind of data more effectively. However,
when the data contains extreme values or outliers, the harmonic mean is preferred because
it is less affected by these extremes. (Naslina, Jayanthi, Syahida & Bakri 2020) and (Lai &
Arasan 2020) deduced that the modified Cox-Snell residuals for the Gompertz model based
on the empirical harmonic mean perform better than both standard and other modified Cox-
Snell residuals. (Arasan & Midi 2021) concluded that harmonic mean and jackknife har-
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monic mean residuals perform significantly better, especially when censoring proportions
are high.

In the case of interval-censored data, where the exact timing of an event is unknown but
falls within a specified range, traditional methods may not yield accurate results. When
data is interval-censored, the Cox-Snell residuals themselves are also interval-censored.
(Farrington 2000) recommends replacing the interval residuals with expected values un-
der exp(1). However, this approach may be impractical for more complex models or when
the data exhibits mixed-case censoring. To address this, this study proposes a change to
the Cox-Snell residuals by using the jackknife bias-corrected harmonic mean and random
imputation, which is better at dealing with heavy censoring. This adjustment is expected
to give more reliable results, as shown in (Arasan & Midi 2023), especially when the data
is censored in different ways and contains outliers, which can improve model assessment
accuracy.

(Arasan & Midi 2023) introduced a method using the bias-corrected bootstrap harmonic
mean and random imputation to adjust residuals for the extreme minimum value regression
with right- and interval-censored data. The extreme minimum value regression model only
accommodates monotonic hazards with a simpler data structure. Their study demonstrated
that these adjusted residuals were effective for assessing model adequacy and identifying
influential observations. In contrast, the current study focuses on modifying the Cox-Snell
residuals using the jackknife bias-corrected harmonic mean and random imputation for
a two-parameter distribution with a bathtub-shaped hazard, which has a more complex data
structure. While both the study by (Arasan & Midi 2023) and the present work aim to im-
prove residuals in the presence of censoring, our approach emphasizes the jackknife tech-
nique, particularly in cases of mixed censoring with a non-monotonic hazard rate. Although
these two studies explore similar goals, they propose different models and computational
techniques for addressing residual issues in survival analysis.

2. Methodology

2.1. The model

Let T be a non-negative random variable representing the survival time of an event. The
density and survivor functions for the TBP model by (Chen 2000) are given by Eqs. (1) and
(2).

f (t,λ ,γ) = λγtγ−1 exp
(

tγ +λ (1− etγ

)
)
, (1)

S(t,λ ,γ) = exp
(

λ

(
1− etγ

))
, t > 0. (2)

The effect of the covariates can be incorporated into the model by allowing the parameter
λ to be a function of the covariates. If the vector of covariate values is x′ =(x0,x1, · · · ,xp−1),
and the vector of regression coefficients is β

′ = (β0,β1, · · · ,βp−1), then λ = e−β ′x, where
γ > 0 represents an unknown parameter. The density and survivor functions for the TBPR
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model are given by Eqs. (3) and (4).

f (t,β ,γ) = γtγ−1 exp
(
−β

′x+ tγ + e−β ′x(1− etγ

)
)
, (3)

S(t,β ,γ) = exp
(

e−β ′x(1− etγ

)
)
, t > 0. (4)

The distribution has a monotonically increasing hazard function when γ ≥ 1 and may
have a bathtub-shaped hazard function when γ < 1. Consider the case where there are
lifetimes for i = 1,2, . . . ,n observations. Let the left and right endpoints for the ith subject
be tLi and tRi , respectively. To distinguish between censoring types for each observation, we
define an indicator variable δi as follows:

δi =

{
1 if the ith observation is interval-censored,

0 if the ith observation is right-censored.
(5)

The likelihood function for the full sample with interval and right-censored data is
shown by Eq. (6).

l(β ,γ) =
n

∏
i=1

[S(tLi)−S(tRi)]
δi [S(tLi)]

(1−δi) . (6)

So, for the TBPR model the likelihood and log-likelihood functions for the full sample
are shown by Eqs. (7) and (8).

l(β ,γ) =
n

∏
i=1

[
ee−β ′xi (1−exp(tγ

Li
))− ee−β ′xi (1−exp(tγ

Ri
))
]δi

[
ee−β ′xi (1−e

tγLi
)
](1−δi)

(7)

L(β ,γ) =
n

∑
i=1

δi

{
log

[
ee−β ′xi (1−exp(tγ

Li
))− ee−β ′xi (1−exp(tγ

Ri
))
]}

(8)

+(1−δi)

{
e−β ′xi(1− etγ

Li
)

}
.

The estimates for β and γ are obtained by solving the likelihood equations using any
iterative technique suited for nonlinear equations. The inverse of the observed informa-
tion matrix, denoted as i(β̂ , γ̂), can be computed from the second partial derivatives of the
log-likelihood function, evaluated at β̂ and γ̂ , providing estimates for the variance and co-
variance, as shown in Eq. (9).

V̂ar(β̂ , γ̂) = [i(β̂ , γ̂)]−1. (9)
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2.2. The residuals

The Cox-Snell residual for the ith subject is given by rCi = Ĥ(ti) = − log(Ŝ(ti)), where
Ĥ(ti) and Ŝ(ti) are the estimated cumulative hazard and survivor functions, respectively.
As discussed by (Cox & Snell 1968), a challenge arises when dealing with censored data,
particularly right-censored observations, as these residuals tend to underestimate the true
values. To address this, we propose modified Cox-Snell residuals using bias-corrected har-
monic means via the jackknife method and random imputation, depending on the type of
censoring.

Right-Censored Data

To adjust Cox-Snell residuals under right-censoring, the jackknife bias-corrected har-
monic mean is applied. The ith jackknife sample is constructed by removing the ith observa-
tion from the original dataset of n observations, as described by (Efron & Tibshirani 1994)
and defined in Eq. (10).

t(i) = (t1, t2, . . . , ti−1, ti+1, . . . , tn) (10)

Let θ̂h(i) be the harmonic mean from the ith jackknife sample. The average of these
harmonic means is:

θ̂h(.) =
n

∑
i=1

θ̂h(i)

n

The jackknife estimate of bias is given by (n−1)(θ̂h(.)− θ̂h), where θ̂h is the harmonic
mean of the full dataset. The jackknife bias-corrected estimate can then be obtained as
shown in Eq. (11).

θ̂h jack = nθ̂h − (n−1)(θ̂h(.)). (11)

The altered Cox-Snell residual when data is right-censored using the jackknife bias-
corrected estimate is given by Eq. (12).

rjack

Ci
= rCi + θ̂h jack for the ith subject (12)

Interval-Censored Data

Residual analysis under interval-censoring is more complex (Farrington 2000). A prac-
tical method introduced by (Arasan & Midi 2023) uses random imputation. Let S(·) denote
the model-based survivor function. For the ith subject, generate R values from the uni-
form distribution U(S(tRi),S(tLi)), then transform these to obtain pseudo-lifetimes t r

i , for
r = 1,2, . . . ,R. The imputed lifetime is estimated as:

t
′
i =

R

∑
r=1

t r
i
R
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The adjusted Cox-Snell residual for interval-censored data is then:

rint
Ci
= Ĥ(t

′
i ) =− log(Ŝ(t

′
i )) (13)

General Formulation

Combining both scenarios, the modified Cox-Snell residual is defined as:

r∗Ci
=

{
rjack

Ci
if data is right-censored

rint
Ci

if data is interval-censored
(14)

Following that, the adjusted martingale and deviance residuals using the jackknife bias-
corrected estimate are given by Eqs. (15) and (16).

r∗Mi
= δi − r∗Ci

. (15)

r∗Di
= Sgn(r∗Mi

)[−2(r∗Mi
+δi ln(δi − r∗Mi

))]1/2. (16)

The score or Schoenfeld residual (rSi ) was proposed by (Schoenfeld 1982), and is de-
rived from the first derivatives of the log-likelihood function with respect to its parameters.
Consequently, these residuals exhibit varying values for each parameter in the model. Since
the data is both interval- and right-censored, the adjusted score residuals can be obtained
using the imputed lifetimes discussed in Section 2.2. Let,

t̃ =

{
t
′
i for ti interval-censored,

tLi for ti right-censored.
(17)

The log-likelihood for the full sample is given by Eq. (18).

ℓ(β ,γ) =
n

∑
i=1

δi log f (t̃i,β ,γ)+(1−δi) logS(t̃i,β ,γ)

=
n

∑
i=1

δi

[
logγ +(γ −1) log t̃i −β

′xi + t̃γ

i + e−β ′xi(1− et̃γ

i )
]

(18)

+(1−δi)
[
e−β ′xi(1− et̃γ

i )
]

The adjusted score residuals (r∗Si
) can now be calculated from the components of the first

derivatives of the log-likelihood function with respect to its parameters, β and γ , evaluated
at their respective MLEs, see Eqs. (19) and (20).

∂L(β ,γ)
∂β j

=
n

∑
i=1

−xi j

[
δi + e−β ′xi(1− et̃γ

i )
]
, j = 0,1 · · · , p−1, (19)
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∂L(β ,γ)
∂γ

=
n

∑
i=1

[
δi

(
1
γ
+ ln t̃i

)
+ t̃γ

i ln t̃i
(

δi − e−β ′xiet̃γ

i

)]
. (20)

The plot of r∗Si
versus the observation number should be randomly distributed around

zero for a good fit. Index plots of the score residuals for each covariate in the fitted model
are useful at indicating extreme observations and outliers.

3. Simulation study

Two simulation studies were designed to assess different aspects of the proposed resid-
ual diagnostics as follows.

• Simulation Study I (Sim I) was designed to identify the most suitable modified resid-
uals by evaluating their ability to assess model adequacy across different levels of
censoring and sample sizes.

• Simulation Study II (Sim II) builds on the findings of Sim I and investigates the
effectiveness of the best-performing residuals from Sim I in detecting extreme or
influential observations, which is vital for model diagnostics in clinical survival data.

Sim I was conducted using 1000 replications, at n = 50, 80 and n = 120, with approx-
imate right censoring proportions (cp) of 0.30, 0.40, 0.50, 0.55 and 0.60 for the TBPR
model. The objective is to compare the effectiveness of altered Cox-Snell residuals, utiliz-
ing bias-corrected jackknife harmonic mean and multiple imputation, r∗Ci

against r
′
Ci

and r
′′
Ci

,
using mid-point imputation. Mid-point imputation estimates lifetimes by using the average
of the tLi and tRi . It assumes the true value is near the middle of the range. The simulation
study only examines the effectiveness of the altered Cox-Snell residuals, as the values of
the martingale and deviance residuals are based on these altered Cox-Snell residuals.

The values of β0, β1, and γ were set to 3.3, 0.95, and 0.42, respectively, to mimic the
lifetime of cancer data, measured in months. Survival times were derived using the inverse
transformation method. For the ith observation, the censoring time ci follows an expo-
nential distribution with parameter µ , where the value of µ is adjusted to achieve the de-
sired approximate right censoring proportion in our dataset. The covariate was simulated as
a categorical variable with proportions set to P = 0.5 to mimic the distribution of treatment
types among patients. The parameter estimates can be obtained by solving the likelihood
equations using an iterative procedure designed for nonlinear equations. In this study, the
maximum likelihood estimators for all parameters were computed employing the Newton-
Raphson iterative method.

To generate interval-censored data, we utilized a sequence of 24 check-up times,
τ1,τ2, · · · ,τκ , spaced at two-month intervals, assuming all subjects attended these check-
ups. Subsequently, we determined whether the uncensored lifetimes, ti, fell within any of
these intervals. If ti fell within the interval (τm,τm+1) where m ≤ κ , then the corresponding
left and right bounds, tLi and tRi , for the ith observation, were set to τm and τm+1, respectively.
Otherwise, if ti > τκ , ti would be right-censored at τκ .
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To assess the efficacy of various modifications of the Cox-Snell residuals, it is necessary
to derive the estimated Kaplan-Meier survivor function based on the values of these altered
residuals. Let Ŝ(r∗Ci

) represent the estimated Kaplan-Meier survivor function derived from
the adjusted Cox-Snell residuals. The plot of log[− log(Ŝ(r∗Ci

))] against log(r∗Ci
) should ide-

ally manifest as a linear function with unit slope and intercept zero, as expected when the
residuals follow an unit exponential distribution under a correctly specified model. Conse-
quently, by applying the same methodology to the other residuals, their performances can
be compared based on the mean absolute deviation (MAD) of three key metrics: the inter-
cept, slope, and correlation coefficient R, from their ideal values of 0, 1, and 1, respectively,
indicating a well-fitting model.

Sim II, with 1000 replications, was also carried out using sample sizes of 50,80, 200
and 360, along with approximate right censoring proportions (cp) set at 0.10 and 0.30 for
the TBPR model. The covariate was simulated as categorical variable with a proportion
set to P = 0.5 to mimic the distribution of two different treatment types among patients.
The purpose of this simulation study is to assess and compare the effectiveness of the best
adjusted residuals in detecting extreme observations and outliers. Two data points were
randomly chosen and perturbed to yield extreme observations compared to the others. This
was achieved by altering the mth lifetime, tm, by an amount ω = 3.5 scaled by the standard
deviation of the lifetimes, st , and the largest censored observation, tmax, resulting in t

′
m =

tm +ωst + tmax.
The detection percentage was determined based on whether the randomly selected out-

liers produced the two largest absolute values of the adjusted residuals. For the score resid-
uals, the residual corresponding to the covariate parameter was used to detect outliers. The
detection rate was further categorized into two cases: the percentage of datasets where both
outliers were detected and the percentage of datasets where only one outlier was detected.
In some cases, the methods did not detect any outliers. The overall detection rate was cal-
culated by considering both full and partial detections. Specifically, full weight was given
to cases where both outliers were detected, while half weight was assigned to cases where
only one outlier was detected.

3.1. Simulation results

The results of Sim I are given in Figures 1-3. The plots demonstrate that the newly
proposed adjusted residual, r∗Ci

consistently exhibits significantly lower MAD values for
intercept, slope, and correlation coefficient (R) across all levels of censoring proportions
and sample sizes. This indicates superior performance by r∗Ci

in assessing model adequacy.
Although performance of r

′′
Ci

is marginally superior to that of r
′
Ci

, r∗Ci
notably surpasses both

in indicating a well-fitted model. As n increases, the gap narrows, but r∗Ci
still maintains

a clear advantage, supporting its robustness across different data conditions. These results
confirm the effectiveness of the jackknife bias correction and random imputation method in
improving residual-based diagnostics for right- and interval-censored data.

Sim II results, shown in Table 1, evaluate the ability of four adjusted residuals, r∗Ci
, r∗Mi

,
r∗Di

, and r∗Si
, to detect outliers under two censoring scenarios: cp = 0.10 and cp = 0.30.

The values outside parentheses correspond to cp = 0.10, while those in parentheses refer to
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Figure 1. MAD for TBPR model at n = 50
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Figure 2. MAD for TBPR model at n = 80

cp = 0.30. The goal is to measure how often the two deliberately perturbed observations
are correctly identified as the most extreme. The results indicate that the newly proposed
adjusted Cox-Snell residual, r∗Ci

, performs best in detecting both outliers in over 99% of
simulations even at small sample sizes, and maintaining perfect detection rates at n = 200
and above. It is followed by r∗Mi

, then r∗Di
and r∗Si

, in terms of detection accuracy.

The performance of all methods improve as n increases and when n = 360, where all
residuals except the adjusted score residuals achieved 100% detection for both outliers.
When cp = 0.3, r∗Ci

and r∗Mi
remain robust, maintaining overall detection above 95%, even

with a sample size as low as n = 50. However, the performance of r∗Di
declines rapidly,

achieving only 65.9% overall detection compared to r∗Si
, which achieves 86.3%. Once again,

all performances improve as n increases, particularly r∗Di
, which begins to outperform r∗Si

when n ≥ 200. However, only r∗Ci
and r∗Mi

achieve 100% detection for both outliers at all
censoring levels when n = 360.

These findings demonstrate the effectiveness of r∗Ci
for assessing model adequacy and

detecting outliers, especially in complex censoring settings. Comparing the performance of
different residuals across sample sizes and censoring levels also offers practical guidance
for researchers and clinicians in selecting suitable diagnostics for survival analysis. To-
gether, the results from both simulation studies confirm the reliability and robustness of the
proposed residual adjustments.
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Figure 3. MAD for TBPR model at n = 120

Table 1. Percentage detection for different sample sizes and censoring proportions

n Type 2 obs 1 obs Overall
r∗Ci

99.0 (97.5) 1.0 (2.5) 99.5 (98.8)
r∗Mi

97.3 (90.2) 2.7 (9.8) 98.7 (95.1)
50 r∗Di

71.7 (39.6) 26.9 (52.5) 85.2 (65.9)
r∗Si

76.1 (76.3) 20.8 (20.0) 86.5 (86.3)
r∗Ci

100.0 (99.1) 0.0 (0.9) 100.0 (99.6)
r∗Mi

99.7 (97.1) 0.3 (2.9) 99.9 (98.6)
80 r∗Di

86.5 (55.3) 13.2 (40.3) 93.1 (75.5)
r∗Si

84.1 (80.3) 14.5 (16.9) 91.4 (88.8)
r∗Ci

100.0 (100.0) 0.0 (0.0) 100.0 (100.0)
r∗Mi

100.0 (100.0) 0.0 (0.0) 100.0 (100.0)
200 r∗Di

99.0 (89.1) 1.0 (10.9) 99.5 (94.6)
r∗Si

94.3 (88.5) 5.7 (10.7) 97.2 (93.9)
r∗Ci

100.0 (100.0) 0.0 (0.0) 100.0 (100.0)
r∗Mi

100.0 (100.0) 0.0 (0.0) 100.0 (100.0)
360 r∗Di

100.0 (98.5) 0.0 (1.5) 100.0 (99.3)
r∗Si

97.1 (93.8) 2.9(6.1) 98.6 (96.9)

Values outside parentheses correspond to cp = 0.10, while values in parentheses correspond to cp = 0.30.

4. Real example on Hodgkin’s Disease

In this section, we apply the proposed methods to a real dataset to demonstrate the
practical applicability of the modified residuals. The dataset comprises the survival times
(in months) of 35 patients diagnosed with Hodgkin’s Disease and treated with nitrogen mus-
tards, as originally analyzed by (Bartolucci & Dickey 1977). The survival time represents
the duration from treatment initiation to either death or censoring. Patients were classified
into two groups: Group 1 received minimal or no prior therapy, while Group 2 underwent
heavy prior therapy. Among these patients, 9 were right-censored, resulting in a censoring
proportion of cp = 0.257, which falls within the range considered in our simulation studies.

This dataset was selected to evaluate the diagnostic performance of the adjusted residu-
als in detecting model fit and influential observations in a real-world clinical scenario. We
focus on checking the fit of the TBPR model and testing the modified residuals with both
right- and interval-censored data. By comparing the results from our simulations with the
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Figure 4. Turnbull and TBPR Survivor Function Estimates for Hodgkin’s Disease data by
Group

real data, this section will help confirm the findings from the simulation study and shows
how useful the proposed methods are for model diagnostics in a clinical context.

The TBPR model was fitted using the treatment group as a categorical covariate. To
align with the objectives of this study, the data was modified to create interval-censored
data with a 2-month width. To assess the model fit, we obtain the Turnbull estimate of the
survivor function (TB) and compare it with the parametric survivor function obtained using
the TBPR model for each patient group. Figure 4 presents the plots, indicating that employ-
ing the TBPR model would be rather appropriate for the dataset. The survival functions for
the two groups indicate that the patients who received little or no prior therapy have slightly
better chances of survival than the patients who received heavy prior therapy.

Table 2 displays the parameter estimates obtained from fitting the TBPR model to the
Hodgkin’s Disease dataset, with group as the covariate. The p-value associated with β1

indicates a lack of statistically significant difference between patients who received minimal
or no prior treatment and those who underwent heavy prior treatments. According to the
estimated parameters, the median survival time for patients in the first and second groups is
14.5 and 14.2 months, respectively, indicating a relatively small difference. Figures 5 and
6 show the index plots for r∗Ci

, r∗Mi
,r∗Di

, and r∗Si
for the Hodgkin’s Disease data.

All plots except the r∗Di
plot indicate that observation 30 exceeds the two standard devi-

ations from the mean limit, respectively. Thus, it is important that we investigate this obser-
vation thoroughly. Patient 30 had the longest censored lifetime of approximately 40 months
among those who underwent extensive prior treatment. All other observations, whether
they experienced failure (uncensored) or were censored, had survival times shorter than ob-
servation 18. The r∗Si

plot was the only one that singled out observation 18 in addition to
observation 30. This was the second largest censored lifetime of approximately 30 months
among those who underwent extensive prior treatment. All other patients, whether they
experienced an event (failure) or were censored, had survival times shorter than that of ob-
servation 18. However, since observation 18 was not flagged as extreme in either the r∗Ci
and r∗Mi

plots, both of which exhibited superior performance in the simulation study, it is
unlikely to be a true outlier.
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Table 2. Estimates and 95% Wald interval for the parameters of TBPR Model

Parameter Estimates Std.Err Z P Val lower upper

β0 2.794 0.693 4.030 0.000 1.435 4.153
β1 -0.0199 0.404 -0.049 0.961 -0.811 0.772
γ 0.341 0.035 9.830 0.000 0.273 0.410
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Figure 5. Index plot of adjusted Cox-Snell (a) and adjusted martingale (b) residuals for
Hodgkin’s Disease data.

The analysis of the Hodgkin’s Disease dataset confirmed the findings from the simula-
tion studies. The adjusted residuals, particularly r∗Ci

and r∗Mi
, effectively identified obser-

vation 30 as an influential outlier, demonstrating their reliability across both simulated and
practical scenarios. This is clearly illustrated in Figure 5, where observation 30 appears
as a distinct outlier with substantially higher residual values in both the r∗Ci

and r∗Mi
plots,

reinforcing the simulation findings. These results support the practical effectiveness of the
proposed methods in real-world survival analysis, even under moderate censoring. The
TBPR model showed a good fit to the data, and patients with minimal or no prior therapy
exhibited slightly better survival outcomes.

These real data findings align with those observed in Simulation Study II. The adjusted
residuals r∗Ci

and r∗Mi
consistently identified the most extreme observations, confirming their

robustness and diagnostic value. Figure 5 highlights observation 30 as a clear outlier, fur-
ther validating the ability of these residuals to detect influential cases. In addition, the com-
parison of model-based and Turnbull survivor curves supports the adequacy of the TBPR
model. Together, the results demonstrate that the proposed residual adjustments serve as
reliable tools for evaluating model fit and identifying outliers, making them valuable for
practical use in survival analysis with interval- or right-censored data.



14 J. Arasan: Jackknife-based diagnostics for non-monotonic hazard...

(a) (b)

Figure 6. Index plot of adjusted score (a) and adjusted deviance (b) residuals for Hodgkin’s
Disease data.

5. Conclusion

In this study, we aimed to develop and evaluate modified residuals for model diagnos-
tics in survival analysis, particularly for the TBPR model with right- and interval-censored
data. Specifically, we explored the performance of various residuals modified using bias-
corrected jackknife harmonic means with random imputation. The results of the first simula-
tion study showed that the newly proposed adjusted residual, r∗Ci

, consistently outperformed
other variations of the Cox-Snell residuals in detecting model fit, exhibiting significantly
lower mean absolute deviation (MAD) values across all levels of censoring proportions and
sample sizes. While r

′′
Ci

performed slightly better than r
′
Ci

, r∗Ci
still proved superior in iden-

tifying well-fitted models.
The second simulation study showed that r∗Ci

and r∗Mi
residuals were particularly effective

in detecting influential observations, while r∗Si
and r∗Di

residuals performed poorly, although
their performance improved as sample sizes increased. These findings highlight the im-
portance of selecting the appropriate residuals for specific types of censoring and sample
sizes. Thus, the newly proposed r∗Ci

residual significantly outperformed other variations of
the Cox-Snell residuals in terms of model diagnostics and detecting extreme observations.
Our objective was to improve upon traditional residuals and test their effectiveness through
both simulation and real data.

We also applied the proposed methods to a modified real dataset on Hodgkin’s Disease
patients. The goal was to demonstrate how the proposed residual adjustments perform in
a real-world survival analysis. We focused on assessing the fit of the TBPR model and
testing the modified residuals with both right- and interval-censored data, which are com-
mon in survival analysis. By comparing the results from our simulations with the real data,
we were able to confirm the findings from the simulation study and show how useful the
proposed methods are for model diagnostics in a clinical context. The results showed that
the modified residuals were effective in detecting extreme and influential observations, for
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the TBPR model, which aligns with the objectives of this study. For instance, the r∗Ci
and

r∗Mi
residuals successfully identified outliers in the Hodgkin’s Disease data, confirming their

utility in practical, real-world survival analysis. Therefore, the study’s objectives were suc-
cessfully achieved: the proposed modifications to the Cox-Snell residuals improved model
diagnostics and provided meaningful results in both simulated and real-world data contexts.

The methods presented in this research, being computationally intensive and empirically
driven, can easily be extended to other models, such as bivariate or parallel-system models,
and can handle different types of data, including truncated, left-censored, and mixed-case
censored data. Further exploration could involve using double bootstrap techniques to refine
these diagnostics. Finally, the analysis of the Hodgkin’s Disease dataset illustrates that
the TBPR model is suitable for the data, with patients who received minimal or no prior
therapy having slightly better survival outcomes compared to those who received heavy
prior therapy.
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